If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2+3x)=18
We move all terms to the left:
(x^2+3x)-(18)=0
We get rid of parentheses
x^2+3x-18=0
a = 1; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*1}=\frac{6}{2} =3 $
| -6(y+5)=2y-14 | | y=2/3+1(2) | | 12x+10=54-10x. | | y=2/3+1(0,2) | | 8x-5+97=180 | | 0.29x+0.11x=20. | | m6=–4 | | (15x-7)=(13x+9) | | O.5x+0.75x=x+10 | | 2(x+$4.00)=$26.00 | | I.5x+0.75x=x+10 | | z+20/9=3 | | 71-2q=-25 | | -12s+-6s=18 | | 14=2b | | 9w+4w-4=22 | | 4x-14=5x | | 3n—5=-8(6+5n) | | 9k=–360 | | 7/8h-5/8=8 | | 8b+5-3b=20 | | 5j+-15j=20 | | 3(7r-9.3)=58.3 | | 7x=8=48 | | 11j+-13j=18 | | 5/8=y/11 | | 4x-0.3=1.6 | | 9d+6d+1=16 | | 42=6(4x-1) | | 9d+6d+1=16 | | 4(x+0.3)=2.3 | | 19x-3x+-11=11 |